念笔记TF009:对数几率领回归。学习笔记TF009:对数几乎引领回归。

logistic函数,也称sigmoid函数,概率分布函数。给一定特定输入,计算输出”success”的几率,对回题回答”Yes”的几率。接受单个输入。多维数据要训练集样本特征,可以为此线性回归模型表达式合并成单值。

logistic函数,也称sigmoid函数,概率分布函数。给得特定输入,计算输出”success”的概率,对回题回答”Yes”的几率。接受单个输入。多维数据要训练集样本特征,可以就此线性回归模型表达式合并成为单值。

损失函数可以使平方误差。训练集”Yes”代表100%概率或输出值1的票房价值。损失刻画特定样本模型分配小于1值概率。”No”概率值0。损失是范分配样本概率值并获得平方。平方误差惩罚和损失和数级情形。输出及期望相差太远,交叉熵(cross
entropy)输出更大值(惩罚)。模型期望输出”Yes”样本预测概率接近0时,罚项值增长至类似无穷大。训练结束,模型不可能做出这样的缪预测。TensorFlow提供单个优化步骤sigmoid输出计算交叉熵。

损失函数可以运用平方误差。训练集”Yes”代表100%概率或输出值1的概率。损失刻画特定样本模型分配小于1值概率。”No”概率值0。损失是范分配样本概率值并赢得平方。平方误差惩罚与损失及数级情形。输出以及巴相差太远,交叉熵(cross
entropy)输出更大值(惩罚)。模型期望输出”Yes”样本预测概率接近0时,罚项值增长及类似无穷大。训练了,模型不容许做出这么的一无是处预测。TensorFlow提供单个优化步骤sigmoid输出计算交叉熵。

信息论,符号字符串每个字符出现概率都解,用香农熵估计字符串每个符号编码所需要平均最小位数。符号编码,如果假要别概率非真正概率,符号编码长度还不行。交叉熵以次漂亮编码方案计算和字符串编码平均最小位数。损失函数期望输出概率分布,实际值100%和0,将自定概率作为范测算输出。sigmoid函数输出概率值。当真正概率等于从定概率,交叉熵值最小。交叉熵越接近熵,自定概率是确实实概率更好逼近。模型输出以及期待输出更加接近,交叉熵越聊。

信息论,符号字符串每个字符出现概率就清楚,用香农熵估计字符串每个符号编码所欲平均最小位数。符号编码,如果假要别概率非实际概率,符号编码长度还怪。交叉熵以次好编码方案计算和字符串编码平均最小位数。损失函数期望输出概率分布,实际值100%和0,将于定概率作为范计算输出。sigmoid函数输出概率值。当真正概率等于从定概率,交叉熵值最小。交叉熵越接近熵,自定概率是确实实概率更好逼近。模型输出以及期待输出更加接近,交叉熵越聊。

从今csv文件读取数据,加载解析,创建批次读取张量多行数据,提升推断计算效率。tf.decode_csv()
Op将字符串(文本行)转换到指定默认值张量列元组,为每列设置数据类型。读取文件,加载张量batch_size行。属性数据(categorical
data),推断模型需要拿字符串特征转换为数值型特征。每个属性特征扩展为N维布尔型特征,每个可能取值对应一维。具备属性相应维度取值1。模型对每个可能取值独立加权。单个变量表示只是可能有数种值属性。所有特征排列矩阵,矩阵转置,每行一样以,每列一特点。输入,调用read_csv,转换读取数据,tf.equal方法检查属性值与常量值是否当,tf.to_float方法将布尔值转换成数值。tf.stack方法打包所有布尔值进单个张量。

从今csv文件读取数据,加载解析,创建批次读取张量多行数据,提升推断计算效率。tf.decode_csv()
Op将字符串(文本行)转换到指定默认值张量列元组,为每列设置数据类型。读取文件,加载张量batch_size行。属性数据(categorical
data),推断模型需要拿字符串特征转换为数值型特征。每个属性特征扩展为N维布尔型特征,每个可能取值对应一维。具备属性相应维度取值1。模型对每个可能取值独立加权。单个变量表示只是可能有数种值属性。所有特征排列矩阵,矩阵转置,每行一样以,每列一特征。输入,调用read_csv,转换读取数据,tf.equal方法检查属性值与常量值是否等于,tf.to_float方法将布尔值转换成数值。tf.stack方法打包所有布尔值进单个张量。

训练,度量准确率,正确预测样本总数占全部样本比例。样本输出超过0.5变换为正应。tf.equal比较预测结果与实际值是否等于。tf.reduce_mean统计有对预测样本数,除以批次样书总数,得到不错预测百分比。

教练,度量准确率,正确预测样本总数占全体样书比例。样本输出超过0.5转换为刚刚回复。tf.equal比较预测结果与实际值是否当。tf.reduce_mean统计有对预测样本数,除以批次样书总数,得到正确预测百分比。

 

import tensorflow as tf
import os
#参数变量初始化
W = tf.Variable(tf.zeros([5, 1]), name="weights")#变量权值
b = tf.Variable(0., name="bias")#线性函数常量,模型偏置
def combine_inputs(X):#输入值合并
    print "function: combine_inputs"
    return tf.matmul(X, W) + b
def inference(X):#计算返回推断模型输出(数据X)
    print "function: inference"
    return tf.sigmoid(combine_inputs(X))#调用概率分布函数
def loss(X, Y):#计算损失(训练数据X及期望输出Y)
    print "function: loss"
    return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=combine_inputs(X), labels=Y))#求平均值
def read_csv(batch_size, file_name, record_defaults):#从csv文件读取数据,加载解析,创建批次读取张量多行数据
    filename_queue = tf.train.string_input_producer([os.path.join(os.getcwd(), file_name)])
    reader = tf.TextLineReader(skip_header_lines=1)
    key, value = reader.read(filename_queue)
    decoded = tf.decode_csv(value, record_defaults=record_defaults)#字符串(文本行)转换到指定默认值张量列元组,为每列设置数据类型
    return tf.train.shuffle_batch(decoded, batch_size=batch_size, capacity=batch_size * 50, min_after_dequeue=batch_size)#读取文件,加载张量batch_size行
def inputs():#读取或生成训练数据X及期望输出Y
    print "function: inputs"
    #数据来源:https://www.kaggle.com/c/titanic/data
    #模型依据乘客年龄、性别、船票等级推断是否能够幸存
    passenger_id, survived, pclass, name, sex, age, sibsp, parch, ticket, fare, cabin, embarked = \
        read_csv(100, "train.csv", [[0.0], [0.0], [0], [""], [""], [0.0], [0.0], [0.0], [""], [0.0], [""], [""]])
    #转换属性数据
    is_first_class = tf.to_float(tf.equal(pclass, [1]))#一等票
    is_second_class = tf.to_float(tf.equal(pclass, [2]))#二等票
    is_third_class = tf.to_float(tf.equal(pclass, [3]))#三等票
    gender = tf.to_float(tf.equal(sex, ["female"]))#性别,男性为0,女性为1

    features = tf.transpose(tf.stack([is_first_class, is_second_class, is_third_class, gender, age]))#所有特征排列矩阵,矩阵转置,每行一样本,每列一特征
    survived = tf.reshape(survived, [100, 1])
    return features, survived
def train(total_loss):#训练或调整模型参数(计算总损失)
    print "function: train"
    learning_rate = 0.01
    return tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)
def evaluate(sess, X, Y):#评估训练模型
    print "function: evaluate"
    predicted = tf.cast(inference(X) > 0.5, tf.float32)#样本输出大于0.5转换为正回答
    print sess.run(tf.reduce_mean(tf.cast(tf.equal(predicted, Y), tf.float32)))#统计所有正确预测样本数,除以批次样本总数,得到正确预测百分比
#会话对象启动数据流图,搭建流程
with tf.Session() as sess:
    print "Session: start"
    tf.global_variables_initializer().run()
    X, Y = inputs()
    total_loss = loss(X, Y)
    train_op = train(total_loss)
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    training_steps = 1000#实际训练迭代次数
    for step in range(training_steps):#实际训练闭环
        sess.run([train_op])
        if step % 10 == 0:#查看训练过程损失递减
            print str(step)+ " loss: ", sess.run([total_loss])
    print str(training_steps) + " final loss: ", sess.run([total_loss])
    evaluate(sess, X, Y)#模型评估
    import time
    time.sleep(5)
    coord.request_stop()
    coord.join(threads)
    sess.close()
    import tensorflow as tf
    import os
    #参数变量初始化
    W = tf.Variable(tf.zeros([5, 1]), name="weights")#变量权值
    b = tf.Variable(0., name="bias")#线性函数常量,模型偏置
    def combine_inputs(X):#输入值合并
        print "function: combine_inputs"
        return tf.matmul(X, W) + b
    def inference(X):#计算返回推断模型输出(数据X)
        print "function: inference"
        return tf.sigmoid(combine_inputs(X))#调用概率分布函数
    def loss(X, Y):#计算损失(训练数据X及期望输出Y)
        print "function: loss"
        return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=combine_inputs(X), labels=Y))#求平均值
    def read_csv(batch_size, file_name, record_defaults):#从csv文件读取数据,加载解析,创建批次读取张量多行数据
        filename_queue = tf.train.string_input_producer([os.path.join(os.getcwd(), file_name)])
        reader = tf.TextLineReader(skip_header_lines=1)
        key, value = reader.read(filename_queue)
        decoded = tf.decode_csv(value, record_defaults=record_defaults)#字符串(文本行)转换到指定默认值张量列元组,为每列设置数据类型
        return tf.train.shuffle_batch(decoded, batch_size=batch_size, capacity=batch_size * 50, min_after_dequeue=batch_size)#读取文件,加载张量batch_size行
    def inputs():#读取或生成训练数据X及期望输出Y
        print "function: inputs"
        #数据来源:https://www.kaggle.com/c/titanic/data
        #模型依据乘客年龄、性别、船票等级推断是否能够幸存
        passenger_id, survived, pclass, name, sex, age, sibsp, parch, ticket, fare, cabin, embarked = \
            read_csv(100, "train.csv", [[0.0], [0.0], [0], [""], [""], [0.0], [0.0], [0.0], [""], [0.0], [""], [""]])
        #转换属性数据
        is_first_class = tf.to_float(tf.equal(pclass, [1]))#一等票
        is_second_class = tf.to_float(tf.equal(pclass, [2]))#二等票
        is_third_class = tf.to_float(tf.equal(pclass, [3]))#三等票
        gender = tf.to_float(tf.equal(sex, ["female"]))#性别,男性为0,女性为1

        features = tf.transpose(tf.stack([is_first_class, is_second_class, is_third_class, gender, age]))#所有特征排列矩阵,矩阵转置,每行一样本,每列一特征
        survived = tf.reshape(survived, [100, 1])
        return features, survived
    def train(total_loss):#训练或调整模型参数(计算总损失)
        print "function: train"
        learning_rate = 0.01
        return tf.train.GradientDescentOptimizer(learning_rate).minimize(total_loss)
    def evaluate(sess, X, Y):#评估训练模型
        print "function: evaluate"
        predicted = tf.cast(inference(X) > 0.5, tf.float32)#样本输出大于0.5转换为正回答
        print sess.run(tf.reduce_mean(tf.cast(tf.equal(predicted, Y), tf.float32)))#统计所有正确预测样本数,除以批次样本总数,得到正确预测百分比
    #会话对象启动数据流图,搭建流程
    with tf.Session() as sess:
        print "Session: start"
        tf.global_variables_initializer().run()
        X, Y = inputs()
        total_loss = loss(X, Y)
        train_op = train(total_loss)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        training_steps = 1000#实际训练迭代次数
        for step in range(training_steps):#实际训练闭环
            sess.run([train_op])
            if step % 10 == 0:#查看训练过程损失递减
                print str(step)+ " loss: ", sess.run([total_loss])
        print str(training_steps) + " final loss: ", sess.run([total_loss])
        evaluate(sess, X, Y)#模型评估
        import time
        time.sleep(5)
        coord.request_stop()
        coord.join(threads)
        sess.close()

参考资料:
《面向机器智能的TensorFlow实践》

 

接加我微信交流:qingxingfengzi
自我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz

参考资料:
《面向机器智能的TensorFlow实践》

欢迎加我微信交流:qingxingfengzi
自身的微信公众号:qingxingfengzigz
本身夫人张幸清的微信公众号:qingqingfeifangz

相关文章